Reg. No.:	
-----------	--

Question Paper Code: 42442

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2018

Third Semester

Electronics and Communication Engineering EC2204 - SIGNALS AND SYSTEMS (Common to Biomedical Engineering) (Regulations 2008)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART – A (10×2=20 Marks)

- 1. Determine the fundamental period of a signal $x[n] = 1 + e^{i4\pi n/7} e^{i2\pi n/6}$.
- 2. Find whether the given system $y(t) = x(\sin(t))$ is casual or not.
- 3. Determine the Fourier series representation of the signal $x(t) = 5\cos\left(\frac{\pi}{2}t + \frac{\pi}{6}\right)$.
- 4. Find the initial value theorem for $x(t) = 5 e^{-4t}$ using Laplace transform.
- 5. Convert the following differential equation into integral form and obtain the block diagram representations.

$$\frac{\mathrm{dy}(t)}{\mathrm{dt}} + 5 \mathrm{y}(t) = \mathrm{x}(t)$$

- 6. List out the advantages of state space representation of a system.
- 7. Find the DTFT of the signal $x[n] = \{2, 1, 4, 1, 2\}$.
- 8. Determine the ROC and Z-transform of a given signal $x[n] = \left(\frac{1}{2}\right)^n u[n] + \left(\frac{1}{3}\right)^n u[n]$.
- 9. State the relationship between the DTFT and Z-transform.
- 10. List out the properties of convolution sum.

PART - B

(5×16=80 Marks)

11. a) A discrete time signal is given below.

Sketch and label carefully each of the following signals:

1)
$$x[3-n]$$

3)
$$x[n-2] \delta[n-2]$$

4)
$$x[(n-1)^2]$$

(16)

(OR)

b) Consider the capacitor shown in the given figure. Let input x(t) = i(t) and output $y(t) = v_o(t)$.

- i) Find the input-output relationship.
- ii) Determine whether the system is
 - 1) Memoryless
- 2) Causal

3) Linear

4) Time invariant

5) Stable.

(16)

- 12. a) i) Consider the periodic square wave x(t) shown in given figure.
 - 1) Determine the complex exponential Fourier series of x(t).
 - 2) Determine the trigonometric fourier series of x(t).

(10)

ii) Find the Fourier series co-efficient for the given signal

$$\mathbf{x}(t) = 1 + \sin \omega_0 t + 2\cos \omega_0 t + \cos \left(2\omega_0 t + \frac{\pi}{4}\right)$$

and also plot the magnitude and phase spectrum.

(6)

(OR)

b) i) Find the FT of the signum function, sgn(t) defined as

$$sgn(t) = \begin{cases} +1, & t > 0 \\ 0, & t = 0 \\ -1, & t < 0 \end{cases}$$
 and plot the spectrum. (8)

- ii) Find the Laplace transform of the given signal $x(t) = (e^{-3t} u(t))^* (t. u(t))$. (8)
- 13. a) i) Obtain the expression for the impulse response of the interconnection systems shown in the given figure. (8)

- ii) Perform the convolution of two signals, $x_1(t) = e^{-\alpha t} u(t)$ and $x_2(t) = e^{-\beta t} u(t)$. (8)
- (OR)
 b) i) Find the natural response of an LTI system described by the differential equation.

$$4\frac{dy(t)}{dt} + 8y(t) = x(t); y(0) = 2$$
 (8)

ii) Consider a continuous-time LTI system for which the input x(t) and output y(t) are related by

$$\frac{d^{2}y(t)}{dt^{2}} + \frac{dy(t)}{dt} - 2y(t) = x(t)$$

- 1) Find the system function H(s).
- 2) Determine the impulse response h(t) of a given system is causal. (8)
- 14. a) i) Find the minimum sampling interval T_s to satisfy Shanon's rule for 1) $x(t) = \cos(2\pi t) + \cos(5\pi t)$

2)
$$x(t) = \cos(2\pi t) \frac{\sin(\pi t)}{\pi t} + \cos(2\pi t) \frac{\cos(\pi t)}{\pi t}$$
 (8)

ii) State and prove the Time shifting property and Parseval relationship property of DTFT. (8)

(OR

b) i) Find X(z) for the given x[n], using linearity and multiplication by an exponential properties.

$$x[n] = a^n \cos (\Omega n) u[n].$$
 (8)

ii) Determine x[n] if

$$\mathbf{x}[\mathbf{z}] = \frac{1 - \mathbf{z}^{-1} + \mathbf{z}^{-2}}{\left(1 - \frac{1}{2}\mathbf{z}^{-1}\right)\left(1 - 2\mathbf{z}^{-1}\right)\left(1 - \mathbf{z}^{-1}\right)}$$
 (8)

- 15. a) i) Show that
 - 1) $x[n]*\delta[n] = x[n]$
 - 2) $x[n]*\delta[n n_0] = x[n n_0]$
 - 3) $x[n]*u[n] = \sum_{k=-\infty}^{n} x[k]$

4)
$$x[n]^*u[n-n_0] = \sum_{k=-\infty}^{n-n_0} x[k]$$
 . (8)

- ii) The input x[n] and the impulse response h[n] of a discrete-time LTI system are given by x[n] = u[n], $h[n] = \alpha^n u[n]$; $0 < \alpha < 1$. Compute the output y[n]. (8)

 (OR)
- b) i) The output y[n] of a discrete-time LTI system is found to be $2\left(\frac{1}{3}\right)^n u[n]$ when the input x[n] is u[n]. Find the impulse response h[n] of the system. (8)
 - ii) Find the state equation of a discrete-time system described by

$$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = x[n].$$
 (8)